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Figure 3.
Urban and rural population as proportion of total population, by major areas, 1950–2050

In 2014, sixteen countries still have low levels of urbanization, i.e. below 20 per cent. 
The largest among them, with total populations of 10 million inhabitants or more, include 
Burundi, Ethiopia, Malawi, Niger, South Sudan and Uganda in Africa and Nepal and Sri 
Lanka in Asia (see Map 1). By 2050, all of these countries are expected to become signifi-
cantly more urbanized, with as much as twice their respective proportions urban in 2014. 
In contrast, 59 countries are already more than 80 per cent urban. Among those with 
populations of at least 10 million inhabitants, the most highly urbanized countries are 
Belgium (98 per cent urban), Japan (93 per cent), Argentina (92 per cent) and the Nether-
lands (90 per cent). By 2050, 89 countries are expected to become more than 80 per cent 
urban. When interpreting the differences in levels of urbanization across countries, it is 
important to keep in mind the heterogeneity of the urban definition across countries.

Africa and Asia are urbanizing more rapidly than other regions of the world. The 
rate of urbanization, measured as the average annual rate of change of the percentage 
urban, is highest in Asia and Africa, where currently the proportion urban is increasing 
by 1.5 and 1.1 per cent per annum, respectively. Regions that already have relatively high 
levels of urbanization are urbanizing at a slower pace, at less than 0.4 per cent annually 
(figure 4). In general, the pace of urbanization tends to slow down as a population becomes 
more urbanized.

Urbanization has 
occurred in all major 
areas, yet Africa and 
Asia remain mostly 
rural
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A. Population growth and mass urbanization



B. New forms of urban organization

MIT/Senseable City Lab, Kael Greco
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Ever-increasing complexity of cities
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Increasing uncertainties in urban planning and design

Urgent need for a quantitative  
understanding of cities

• Urban mobility 
• Infrastructure design 
• Social sustainability 

(social segregation, job accessibility) 
• …
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1. Complexity science in a nutshell 
2. Urban scaling laws 
3. Urban mobility 
4. Application: infrastructure design

Content
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What are  
Complex Systems? 

Examples in biology
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What are  
Complex Systems? 

Examples in biology
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1. Many (relatively simple) components 

2. Nonlinear interactions (including feedback loops) 

3. No centralized control 

4. Emergent behavior 

5. Evolution and adaptation

What are  
Complex Systems? 

Properties

Adapted from:  
Complexity Explorer - „Introduction to Complexity“ 
Santa Fe Institute, 2016 (www.complexityexplorer.org)     
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Goals: 
• To reveal regularities in the overall behavior of  

complex systems 
• To derive simple (mathematical) rules that are able to  

explain and predict these regularities 

Approach: 
• System-level approach („big picture view“) 
• Methods: Scaling, network theory, agent-based modeling,  

non-equilibrium dynamics, …  
• Learning from different scientific disciplines

What is  
Complexity Science? 

Goals and Approach



Growing availability of human activity data

• Mobile phone data 
• Smart card data from public transportation 
• GPS traces from vehicular devices 
• Location-based social networks  

(Foursquare, Twitter, Flickr, Running Apps, etc.) 
• User-generated mapping projects (OpenStreetMap) 
• Open data provided by city governments 
• ….



1. Complexity science in a nutshell 
2. Urban scaling laws!
3. Urban mobility 
4. Application: infrastructure design

Content



Luís M.A. Bettencourt Geoffrey B. West

Y ∝ N β

Socio-economic quantity  
(wages, patents, crime,  
AIDS cases etc.)

City population size
Exponent

β ≈1.15 >1

L.M.A. Bettencourt et al. 
Proc. Natl. Acad. Sci. USA (2007)

The scaling of socio-economic quantities with city size



Greater population — !
„faster life and greater dividends“

cities that are superficially quite different in form and location,
for example, are in fact, on the average, scaled versions of one
another, in a very specific but universal fashion prescribed by the
scaling laws of Table 1.

Despite the ubiquity of approximate power law scaling, there
is no simple analogue to the universal quarter-powers observed
in biology. Nevertheless, Table 1 reveals a taxonomic universality
whereby exponents fall into three categories defined by ! ! 1
(linear), !"1 (sublinear), and !#1 (superlinear), with ! in each
category clustering around similar values: (i) ! $1 is usually
associated with individual human needs (job, house, household
water consumption). (ii) ! $0.8 "1 characterizes material
quantities displaying economies of scale associated with infra-
structure, analogous to similar quantities in biology. (iii) !
$1.1–1.3 #1 signifies increasing returns with population size and
is manifested by quantities related to social currencies, such as
information, innovation or wealth, associated with the intrinsi-
cally social nature of cities.

The most striking feature of the data is perhaps the many
urban indicators that scale superlinearly (! #1). These indicators
reflect unique social characteristics with no equivalent in biology
and are the quantitative expression that knowledge spillovers
drive growth (25, 26), that such spillovers in turn drive urban
agglomeration (26, 27), and that larger cities are associated with
higher levels of productivity (28, 29). Wages, income, growth
domestic product, bank deposits, as well as rates of invention,
measured by new patents and employment in creative sectors
(21, 22) all scale superlinearly with city size, over different years
and nations with exponents that, although differing in detail, are
statistically consistent. Costs, such as housing, similarly scale
superlinearly, approximately mirroring increases in average
wealth.

One of the most intriguing outcomes of the analysis is that the
value of the exponents in each class clusters around the same
number for a plethora of phenomena that are superficially quite
different and seemingly unrelated, ranging from wages and
patent production to the speed of walking (see below). This

behavior strongly suggests that there is a universal social dynamic
at play that underlies all these phenomena, inextricably linking
them in an integrated dynamical network, which implies, for
instance, that an increase in productive social opportunities, both
in number and quality, leads to quantifiable changes in individual
behavior across the full complexity of human expression (10–
14), including those with negative consequences, such as costs,
crime rates, and disease incidence (19, 42).

For systems exhibiting scaling in rates of resource consump-
tion, characteristic times are predicted to scale as N1%!, whereas
rates scale as their inverse, N!%1. Thus, if ! "1, as in biology, the
pace of life decreases with increasing size, as observed. However,
for processes driven by innovation and wealth creation, ! #1 as
in urban systems, the situation is reversed: thus, the pace of
urban life is predicted to increase with size (Fig. 2). Anecdotally,
this feature is widely recognized in urban life, pointed out long
ago by Simmel, Wirth, Milgram, and others (11–14). Quantita-
tive confirmation is provided by urban crime rates (42), rates of
spread of infectious diseases such as AIDS, and even pedestrian
walking speeds (30), which, when plotted logarithmically, exhibit
power law scaling with an exponent of 0.09 & 0.02 (R2 ! 0.80;
Fig. 2a), consistent with our prediction.

There are therefore two distinct characteristics of cities re-
vealed by their very different scaling behaviors, resulting from
fundamentally different, and even competing, underlying dy-
namics (9): material economies of scale, characteristic of infra-
structure networks, vs. social interactions, responsible for inno-
vation and wealth creation. The tension between these
characteristics is illustrated by the ambivalent behavior of en-
ergy-related variables: whereas household consumption scales
approximately linearly and economies of scale are realized in
electrical cable lengths, total consumption scales superlinearly.
This difference can only be reconciled if the distribution network
is suboptimal, as observed in the scaling of resistive losses, where
! ! 1.11 & 0.06 (R2 ! 0.79). Which, then, of these two dynamics,
efficiency or wealth creation, is the primary determinant of
urbanization, and how does each impact urban growth?

Table 1. Scaling exponents for urban indicators vs. city size

Y ! 95% CI Adj-R2 Observations Country–year

New patents 1.27 '1.25,1.29( 0.72 331 U.S. 2001
Inventors 1.25 '1.22,1.27( 0.76 331 U.S. 2001
Private R&D employment 1.34 '1.29,1.39( 0.92 266 U.S. 2002
)Supercreative) employment 1.15 '1.11,1.18( 0.89 287 U.S. 2003
R&D establishments 1.19 '1.14,1.22( 0.77 287 U.S. 1997
R&D employment 1.26 '1.18,1.43( 0.93 295 China 2002
Total wages 1.12 '1.09,1.13( 0.96 361 U.S. 2002
Total bank deposits 1.08 '1.03,1.11( 0.91 267 U.S. 1996
GDP 1.15 '1.06,1.23( 0.96 295 China 2002
GDP 1.26 '1.09,1.46( 0.64 196 EU 1999–2003
GDP 1.13 '1.03,1.23( 0.94 37 Germany 2003
Total electrical consumption 1.07 '1.03,1.11( 0.88 392 Germany 2002
New AIDS cases 1.23 '1.18,1.29( 0.76 93 U.S. 2002–2003
Serious crimes 1.16 [1.11, 1.18] 0.89 287 U.S. 2003

Total housing 1.00 '0.99,1.01( 0.99 316 U.S. 1990
Total employment 1.01 '0.99,1.02( 0.98 331 U.S. 2001
Household electrical consumption 1.00 '0.94,1.06( 0.88 377 Germany 2002
Household electrical consumption 1.05 '0.89,1.22( 0.91 295 China 2002
Household water consumption 1.01 '0.89,1.11( 0.96 295 China 2002

Gasoline stations 0.77 '0.74,0.81( 0.93 318 U.S. 2001
Gasoline sales 0.79 '0.73,0.80( 0.94 318 U.S. 2001
Length of electrical cables 0.87 '0.82,0.92( 0.75 380 Germany 2002
Road surface 0.83 '0.74,0.92( 0.87 29 Germany 2002

Data sources are shown in SI Text. CI, confidence interval; Adj-R2, adjusted R2; GDP, gross domestic product.

Bettencourt et al. PNAS ! April 24, 2007 ! vol. 104 ! no. 17 ! 7303
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≈15% per capita increase in wages, GDP, patents etc.  
for each doubling of city size   !

L.M.A. Bettencourt et al. 
Proc. Natl. Acad. Sci. USA (2007)



Network of human interactions as a  
unifying mechanism?



• Mobile phone data

Growing availability of human activity data



Mobile phone data - exemplary data sources 

• Open data 
• Italy  - Telecom Italia Open BigData Initiative 

http://theodi.fbk.eu/openbigdata 

• Big data research competitions 
• Ivory Coast - Orange D4D Challenge 2013 

http://www.d4d.orange.com/en/Accueil 

• Senegal - Orange D4D Challenge 2015 
http://www.d4d.orange.com/en/Accueil 

• Italy - Telecom Italia BigData Challenge 2015 
http://www.telecomitalia.com/tit/en/bigdatachallenge.html 

• (Telco providers and data analytics companies)

http://theodi.fbk.eu/openbigdata
http://www.d4d.orange.com/en/Accueil
http://www.d4d.orange.com/en/Accueil
http://www.telecomitalia.com/tit/en/bigdatachallenge.html


Lets look into the data!Urban scaling laws
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How to assess scaling of social networks
Case study
Network construction
Connectivity structure
Scaling relations

Case study

1

S2 Home and work location determination

We considered all calls made between 10pm and 7am, and selected the most frequent tower id each user
is at call time, thus defining it as the user’s home tower. Each tower is assigned an approximate reception
area from the Voronoi diagram generated from the tower locations.

By assigning each tower to the municipality where its coverage area is most extensive, we assigned
each user to a residence municipality. We compared the number of users to the municipality population
extracted from the Instituto Nacional de Estatstica 2001 Census [1] (depicted in Fig. 1), and found linear
correlation with share of about 5.5% for municipalities with at least 10000 people (see Fig. 2). The
mismatch found for smaller municipalities could be attributed to the approximate manner in which the
assignment between towers and municipalities took place.

By considering the home locations, we evaluated the distribution of distances between users’ home
locations. We found a distribution centered around 10 km, and with most distances concentrated between
1 and 100 km.

.

.
0 110,000 220,00055,000 Meters

0 110,000 220,00055,000 Meters

Legend

Municipality Population Density (per sqm)
popden

6.533800 - 22.585600

22.585601 - 50.634300

50.634301 - 101.431000

101.431001 - 210.998001

210.998002 - 7328.000000

Municipality Population Density

Figure 1. Portugal’s Municipality population density.

Following a similar approach, we also considered all calls made between 9am and 5pm, and selected
the most frequent tower id each user had at call time, defining it as the user’s work tower.

References

1. Instituto nacional de estat́ıstica - 2001 census. URL http://www.ine.pt.
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Several millions of anonymized  
call detail records (CDRs) from  
Portugal for a period of  
≈15 months



Call detail records (CDRs)

• Anonymized ID (surrogate number) of the caller 
• Anonymized ID of the callee 
• Start time of the call 
• Duration of the call 
• The locations of the antennas routing the call



Urban scaling laws
Analysis of call detail records

Conclusions

How to assess scaling of social networks
Case study
Network construction
Connectivity structure
Scaling relations

Step I: Constructing the communication network

Anonymized call detail records (CDR) for a period of 11 months
Node ⇤ Mobile phone user
(Reciprocal) link ⇤ (Reciprocal) call between two users
Considering only the largest connected component (LCC)
⇥ Network with �2 Mio nodes and �10 Mio links, spanning the
entire country

J.P. Onnela, 2007
6 / 23

Inferring the interaction network

Mobile phone user 

Reciprocal call  
between two users 

Node 

Link 

Portugal data: 
1.6 Mio nodes 
6.8 Mio links 







Nodal clustering

Urban scaling laws
Analysis of call detail records

Conclusions

How to assess scaling of social networks
Case study
Network construction
Connectivity structure
Scaling relations

Nodal clustering

Clustering coe�cient

Probability that one’s connections are also connected with each other.
III Properties of networks 11

The quantity � can be measured for a network of n ver-
tices and m edges in time O(mn) using simple breadth-
first search [7], also called a “burning algorithm” in the
physics literature. In Table II, we show values of � taken
from the literature for a variety of di�erent networks. As
the table shows, the values are in all cases quite small—
much smaller than the number n of vertices, for instance.

The definition (1) of � is problematic in networks that
have more than one component. In such cases, there
exist vertex pairs that have no connecting path. Con-
ventionally one assigns infinite geodesic distance to such
pairs, but then the value of � also becomes infinite. To
avoid this problem one usually defines � on such networks
to be the mean geodesic distance between all pairs that
have a connecting path. Pairs that fall in two di�erent
components are excluded from the average. The figures
in Table II were all calculated in this way. An alterna-
tive and perhaps more satisfactory approach is to define �
to be the “harmonic mean” geodesic distance between all
pairs, i.e., the reciprocal of the average of the reciprocals:

��1 =
1

1
2n(n+ 1)

�

i⇥j

d�1
ij . (2)

Infinite values of dij then contribute nothing to the sum.
This approach has been adopted only occasionally in net-
work calculations [260], but perhaps should be used more
often.

The small-world e�ect has obvious implications for the
dynamics of processes taking place on networks. For
example, if one considers the spread of information, or
indeed anything else, across a network, the small-world
e�ect implies that that spread will be fast on most real-
world networks. If it takes only six steps for a rumor
to spread from any person to any other, for instance,
then the rumor will spread much faster than if it takes
a hundred steps, or a million. This a�ects the number
of “hops” a packet must make to get from one computer
to another on the Internet, the number of legs of a jour-
ney for an air or train traveler, the time it takes for a
disease to spread throughout a population, and so forth.
The small-world e�ect also underlies some well-known
parlor games, particularly the calculation of Erdős num-
bers [107] and Bacon numbers.10

On the other hand, the small-world e�ect is also math-
ematically obvious. If the number of vertices within a
distance r of a typical central vertex grows exponentially
with r—and this is true of many networks, including the
random graph (Sec. IV.A)—then the value of � will in-
crease as log n. In recent years the term “small-world
e�ect” has thus taken on a more precise meaning: net-
works are said to show the small-world e�ect if the value
of � scales logarithmically or slower with network size for
fixed mean degree. Logarithmic scaling can be proved

10 http://www.cs.virginia.edu/oracle/

FIG. 5 Illustration of the definition of the clustering coe�-
cient C, Eq. (3). This network has one triangle and eight
connected triples, and therefore has a clustering coe�cient of
3 � 1/8 = 3

8 . The individual vertices have local clustering
coe�cients, Eq. (5), of 1, 1, 1

6 , 0 and 0, for a mean value,
Eq. (6), of C = 13

30 .

for a variety of network models [61, 63, 88, 127, 164]
and has also been observed in various real-world net-
works [13, 312, 313]. Some networks have mean vertex–
vertex distances that increase slower than log n. Bollobás
and Riordan [64] have shown that networks with power-
law degree distributions (Sec. III.C) have values of � that
increase no faster than log n/ log log n (see also Ref. 164),
and Cohen and Havlin [95] have given arguments that
suggest that the actual variation may be slower even than
this.

B. Transitivity or clustering

A clear deviation from the behavior of the random
graph can be seen in the property of network transitivity,
sometimes also called clustering, although the latter term
also has another meaning in the study of networks (see
Sec. III.G) and so can be confusing. In many networks
it is found that if vertex A is connected to vertex B and
vertex B to vertex C, then there is a heightened proba-
bility that vertex A will also be connected to vertex C.
In the language of social networks, the friend of your
friend is likely also to be your friend. In terms of network
topology, transitivity means the presence of a heightened
number of triangles in the network—sets of three vertices
each of which is connected to each of the others. It can
be quantified by defining a clustering coe⇥cient C thus:

C =
3� number of triangles in the network

number of connected triples of vertices
, (3)

where a “connected triple” means a single vertex with
edges running to an unordered pair of others (see Fig. 5).

In e�ect, C measures the fraction of triples that have
their third edge filled in to complete the triangle. The
factor of three in the numerator accounts for the fact that
each triangle contributes to three triples and ensures that
C lies in the range 0 ⇥ C ⇥ 1. In simple terms, C is
the mean probability that two vertices that are network
neighbors of the same other vertex will themselves be
neighbors. It can also be written in the form

C =
6� number of triangles in the network

number of paths of length two
, (4)

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
. (5)

The average clustering, ⇥C ⇤, remains remarkably constant with increasing
city size (�s � 0.02).

16 / 23

Clustering coefficient:  
Probability that one‘s contacts are also connected  
with each other. 

As larger cities provide a larger pool of people, the clustering coefficient  
should decrease if contacts were established at random.  
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Nodal clustering

• Average clustering is an invariant of city size. 
• Even in large cities we live in groups that are as tightly knit as those in  

small towns or ‘villages’.  
Schläpfer M. et al., J Royal Soc Interface, 11(98):20130789, 2014



Human interactions



Potential ‚hidden‘ biases

Urban scaling laws
Analysis of call detail records

Conclusions

Potential bias....?

Findings limited to a subset of the overall population
(demographics)...?

Just more mobile phone usage in larger cities...?

National peculiarities?

...

18 / 23Important to test on many different data sets

• UK, mobile phones and landlines (Schläpfer et al. 2014)  
• Ivory Coast, mobile phones (Andris and Bettencourt, 2014) 
• France and Portugal (Deville, 2014) 
• „Unnamed“ European Country, mobile phones (Llorente, 2015) 
• US and Europe, Twitter data (Tizzoni, 2015) 
• Switzerland, mobile phones (Büchel and von Ehrlich, 2016)
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PERSPECTIVE

Building functional cities
J. Vernon Henderson,1* Anthony J. Venables,1,2 Tanner Regan,1 Ilia Samsonov1

The literature views many African cities as dysfunctional with a hodgepodge of land uses and
poor “connectivity.”One driver of inefficient land uses is construction decisions for highly
durable buildings made under weak institutions. In a novel approach, we model the dynamics
of urban land use with both formal and slum dwellings and ongoing urban redevelopment to
higher building heights in the formal sector as a city grows.We analyze the evolution of Nairobi
using a unique high–spatial resolution data set.The analysis suggests insufficient building
volume throughmost of the city and large slum areas with low housing volumes near the center,
where corrupted institutions deter conversion to formal sector usage.

M
ost cities in the developed world use
land in an orderly pattern that allows
cities to achieve high productivity. For
example, businesses mainly reside in a
central business district (CBD), and re-

sidential neighborhoods have regular layouts
with high densities near the center and lower
densities further out (1). In contrast, many cities
in developing nations have office towers bordered
by slums, scattered fringe developments, and a
consequent lack of connectivity between firms,
workers, and consumers. Such cities are viewed as
nonfunctional (2), with large numbers of people
in informal settlements [62% of the African urban
population according to (3)], poor transport infra-
structure and limited ability to commute (4), and
low worker productivity (5).
Here, we explore factors that may underlie

nonfunctionality of many cities in the developing
world. We analyze how construction decisions
made under weak and corrupt institutions can be
a driver of nonfunctionality. The built environ-
ment resulting from these decisions accounts for
two-thirds of produced capital in developing
countries (6) and is long lived. As such, weak
institutions undermine the competitiveness of
cities, and thus, bad decisions made today have
effects that last for generations. We first dis-
cuss recent model results and then use Nairobi,
Kenya—a city of about 5 million people that is
growing at a rate of 3 to 4% per year—to map out
how the built environment has changed and to
explore ways in which it appears to deviate from
an efficient pattern, with insufficient building
volume through most of the city.
In a recent study (hereafter referred to as

HRV) (7), we developed a general model of the
dynamics of economically efficient urban land
use and of key elements that impede efficient
urban development. To do so, we adapted a
standard urban model to a growth context and
the circumstances of developing countries. The
model captures rapid population growth and
two types of housing technology: Formal hous-
ing, in which capital is sunk, buildings are long-

lived, and construction decisions (such as build-
ing height) are based on expectations of future
rents; and informal, or slum settlement, where
construction is flexible or adjustable over time
(e.g., throughuse of corrugated iron sheets), build-
ing a single story is cheap, but building high is
very expensive. This distinction is illustrated in
Nairobi, where 57% of slumdwellings aremade of
sheet metal and 15% of mud and wood, whereas
90%of formal residences aremade of stone, brick,
or cement block (8).
In the efficient outcome in the model, slums

form at the edge of the city, where land is cheap.
As the city grows, old slums are converted to
formal settlement and new ones form on the ex-
panding edge. Formal sector development is sub-
ject to periodic demolition and reconstruction,
and structures become successively taller and
denser as the city grows and land values increase.
If slum housing is inherently of lower quality,
then slums will eventually be phased out entirely
as incomes grow, just as 19th-century tenements
and shacks in London and New York disap-
peared decades ago. Our model (7) analyzes two

main sources of inefficiency in the dynamics of
city development. One arises from the difficulty
of forming expectations; for example, pessimism
about future city growth undermines willingness
to invest and leads to a lower, more sprawling
city. The other is institutional obstacles in the
process of converting slum developments to
formal sector usage.
There are many such institutional obstacles.

Formal sector development requires financing
and enforcement of contracts, which in turn
requires land ownership rights to be formalized
to mitigate the risk of expropriation. Land rights
are often unclear because of coexisting systems
of private ownership (some illegal or quasi-legal),
communal ownership, and government owner-
ship. Competing claims may result in lengthy
court cases. Slum areas are particularly complex,
with “planning or regulatory powers... split be-
tween a galaxy of private sector actors, landlords,
chiefs and bureaucrats, and gangs” (9). Land
administration is subject to corruption. The
Kenyan elite has been guilty of land-grabbing,
with a government inquiry alleging that the
land allocation process has been subject to cor-
rupt and fraudulent practices and “outright plun-
der” (10). As a result, the cost and feasibility of
conversion to legal formal usage varies depend-
ing on a plot’s history; plots with high conversion
costs remain informal much longer. A spatial
jumble of land rights and conversion costs re-
sults in a hodgepodge of uses, land-use inten-
sities, and stages of redevelopment throughout
the city, including close to the center.
Studying these inefficiencies requires data on

individual buildings and the ability to track them
through time to quantify the potential loss of
building space. Such data are generally difficult
to obtain. For our Nairobi study, we used a
building footprint data set based on extremely
high-resolution aerial photos (well under 50-cm
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Fig. 1. City of Nairobi building height and distribution. Nairobi shows average built height in 2015
as 150-m by 150-m cells split across the formal and slum sectors. The compass (top left) points
north. The location of the Kibera slum and the CBD are marked.The boundary of the city spans about
22 km east to west and 11 km north to south; the map tilt may distort the appearance of distances.
Modified from HRV. [Background imagery Airbus Defense and Space 2016, taken from the SPOT5
satellite 20 September 2004].
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PERSPECTIVE

Building functional cities
J. Vernon Henderson,1* Anthony J. Venables,1,2 Tanner Regan,1 Ilia Samsonov1

The literature views many African cities as dysfunctional with a hodgepodge of land uses and
poor “connectivity.”One driver of inefficient land uses is construction decisions for highly
durable buildings made under weak institutions. In a novel approach, we model the dynamics
of urban land use with both formal and slum dwellings and ongoing urban redevelopment to
higher building heights in the formal sector as a city grows.We analyze the evolution of Nairobi
using a unique high–spatial resolution data set.The analysis suggests insufficient building
volume throughmost of the city and large slum areas with low housing volumes near the center,
where corrupted institutions deter conversion to formal sector usage.

M
ost cities in the developed world use
land in an orderly pattern that allows
cities to achieve high productivity. For
example, businesses mainly reside in a
central business district (CBD), and re-

sidential neighborhoods have regular layouts
with high densities near the center and lower
densities further out (1). In contrast, many cities
in developing nations have office towers bordered
by slums, scattered fringe developments, and a
consequent lack of connectivity between firms,
workers, and consumers. Such cities are viewed as
nonfunctional (2), with large numbers of people
in informal settlements [62% of the African urban
population according to (3)], poor transport infra-
structure and limited ability to commute (4), and
low worker productivity (5).
Here, we explore factors that may underlie

nonfunctionality of many cities in the developing
world. We analyze how construction decisions
made under weak and corrupt institutions can be
a driver of nonfunctionality. The built environ-
ment resulting from these decisions accounts for
two-thirds of produced capital in developing
countries (6) and is long lived. As such, weak
institutions undermine the competitiveness of
cities, and thus, bad decisions made today have
effects that last for generations. We first dis-
cuss recent model results and then use Nairobi,
Kenya—a city of about 5 million people that is
growing at a rate of 3 to 4% per year—to map out
how the built environment has changed and to
explore ways in which it appears to deviate from
an efficient pattern, with insufficient building
volume through most of the city.
In a recent study (hereafter referred to as

HRV) (7), we developed a general model of the
dynamics of economically efficient urban land
use and of key elements that impede efficient
urban development. To do so, we adapted a
standard urban model to a growth context and
the circumstances of developing countries. The
model captures rapid population growth and
two types of housing technology: Formal hous-
ing, in which capital is sunk, buildings are long-

lived, and construction decisions (such as build-
ing height) are based on expectations of future
rents; and informal, or slum settlement, where
construction is flexible or adjustable over time
(e.g., throughuse of corrugated iron sheets), build-
ing a single story is cheap, but building high is
very expensive. This distinction is illustrated in
Nairobi, where 57% of slumdwellings aremade of
sheet metal and 15% of mud and wood, whereas
90%of formal residences aremade of stone, brick,
or cement block (8).
In the efficient outcome in the model, slums

form at the edge of the city, where land is cheap.
As the city grows, old slums are converted to
formal settlement and new ones form on the ex-
panding edge. Formal sector development is sub-
ject to periodic demolition and reconstruction,
and structures become successively taller and
denser as the city grows and land values increase.
If slum housing is inherently of lower quality,
then slums will eventually be phased out entirely
as incomes grow, just as 19th-century tenements
and shacks in London and New York disap-
peared decades ago. Our model (7) analyzes two

main sources of inefficiency in the dynamics of
city development. One arises from the difficulty
of forming expectations; for example, pessimism
about future city growth undermines willingness
to invest and leads to a lower, more sprawling
city. The other is institutional obstacles in the
process of converting slum developments to
formal sector usage.
There are many such institutional obstacles.

Formal sector development requires financing
and enforcement of contracts, which in turn
requires land ownership rights to be formalized
to mitigate the risk of expropriation. Land rights
are often unclear because of coexisting systems
of private ownership (some illegal or quasi-legal),
communal ownership, and government owner-
ship. Competing claims may result in lengthy
court cases. Slum areas are particularly complex,
with “planning or regulatory powers... split be-
tween a galaxy of private sector actors, landlords,
chiefs and bureaucrats, and gangs” (9). Land
administration is subject to corruption. The
Kenyan elite has been guilty of land-grabbing,
with a government inquiry alleging that the
land allocation process has been subject to cor-
rupt and fraudulent practices and “outright plun-
der” (10). As a result, the cost and feasibility of
conversion to legal formal usage varies depend-
ing on a plot’s history; plots with high conversion
costs remain informal much longer. A spatial
jumble of land rights and conversion costs re-
sults in a hodgepodge of uses, land-use inten-
sities, and stages of redevelopment throughout
the city, including close to the center.
Studying these inefficiencies requires data on

individual buildings and the ability to track them
through time to quantify the potential loss of
building space. Such data are generally difficult
to obtain. For our Nairobi study, we used a
building footprint data set based on extremely
high-resolution aerial photos (well under 50-cm
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Fig. 1. City of Nairobi building height and distribution. Nairobi shows average built height in 2015
as 150-m by 150-m cells split across the formal and slum sectors. The compass (top left) points
north. The location of the Kibera slum and the CBD are marked.The boundary of the city spans about
22 km east to west and 11 km north to south; the map tilt may distort the appearance of distances.
Modified from HRV. [Background imagery Airbus Defense and Space 2016, taken from the SPOT5
satellite 20 September 2004].
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Generating simple 3D city models
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Schläpfer, Lee, Bettencourt, arXiv:1512.00946, 2015

DSM DSM - DEM Building polygons

DSM: Digital surface model 
DEM: Digital elevation model
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Height prediction from urban scaling theory

Schläpfer, Lee, Bettencourt, arXiv:1512.00946, 2015

Building height

Population size

Scaling exponent

For cities to be functional: 



Schläpfer, Lee, Bettencourt, arXiv:1512.00946, 2015
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Allometric scaling
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1. Complexity science in a nutshell 
2. Urban scaling laws 
3. Urban mobility!
4. Application: infrastructure design
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Source: New York Time Lapse by Dimid Vazhnik, 2015

‚Collective‘ movements in cities



User ID, Timestamp, Cell tower ID

Individual trajectories from mobile phone data

11:30

12:30
13:00

19:0020:10
22:20



1. How many people visit a given location? 
2. From how far do they come? 
3. How often do they visit?



Spatial networks: strength of nodal interaction

Gravity law:

Radiation model:

Batty, 2013  
Barthelemy, 2011 

Simini et al., 2012

no explicit consideration of visiting frequencies!

……

Marc Barthelemy, Spatial networks, Physics Reports, 2010



• Greater Boston area 
• ≈2 Mio. mobile phone users over 4 months 
• ≈109 location based records per month (triangulation) 
• 46,210 locations (500m x 500m grid cells)

Lets look into the data!



Quantifying the attractiveness of locations

1 visit per month 2 visits per month 3 visits per month



Quantifying the attractiveness of locations

1 visit per month 2 visits per month 3 visits per month

(Weighted, directed network)



r   visiting distance (km) 
f   visiting frequency (visits per month)

Brightness of pixel: number of visitors, q(r,f)



Increasing visiting distance
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Increasing visiting distance



Dimensional analysis

Travel 
speed

Socioeconomic features

Sonin, Dimensional Analysis, Lecture Notes MIT.
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Newbury Street, Boston



number of visitors coming from 5 km and 4 times a month 
=  

number of visitors coming from 10 km and 2 times a month 
= 

number of visitors coming from 20 km and once a month

Example (v = 20km/month):

Newbury Street, Boston



What is the functional relation between:
• number of visitors,!
• their travel distance from home,!
• their visiting frequency?

Dimensional argumentFluid dynamic model

Number of visitors !∝!
[travel distance x visiting frequency]-2

Theoretical expectation



Schläpfer, Szell, Ratti, West (in preparation)

Number of visitors !∝!
[travel distance x visiting frequency]-2



1. How many people visit a given location? 
2. From how far do they come? 
3. How often do they visit?



1. How many

2. From 
3. How often

1. How many people visit a given location?

From how far do they come. How often do they visit.

predictspredicts



Greater Boston
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Locations with ‚anomalous‘ behavior
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1. Complexity science in a nutshell 
2. Urban scaling laws 
3. Urban mobility 
4. Application: infrastructure design
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Electrification planning  
in developing countries



 

several years’ worth of information becomes available) to 
facilitate the mapping of human activity and migration within 
the country (e.g., people are more likely to migrate to areas 
with access to electricity, health and education). Both human 
activity and migration can provide an accurate estimation of 
electricity needs and facilitate better electrification plans, 
particularly when combined with other data sources used in 
state-of-the-art electrification planning practices 

In the light of the above, the proposed 
assessment methodology comprises four steps 
potential of mobile phone data to enha
electrification planning practices:  
(i) Assessment of the energy requirements and consumption 

characteristics of Senegal; 
(ii) Evaluation of the use of mobile phone data as a proxy for 

current and future electricity needs via correlation 
analyses; 

(iii) Assessment of potential future migration 
from non-electrified to electrified areas

(iv) Quantification of centralized 
electrification options considering mobile phone data
socio-economic and geo-referenced informat

The assessment of energy requirements 
characteristics of Senegal is meant to provide context on the 
expected energy needs of the mobile phone users whose 
activity is recorded by the different mobile phone
analysis is supported by socio-economic and 
datasets detailing the expected population and population 
density (i.e., average distance between households)
different areas in Senegal, as well as the 
health, education, markets and so on 
information is used to classify the mobile phone data 
information compiled from the mobile phone
(specifically from Dataset 1 and Dataset 2

characteristics of the corresponding area
correlation between the mobile phone data 
the relevant aggregated electricity profile can be assessed. 
This study is expected to highlight the conditions that make 

 
Fig. 2.  Level of electrification in Voronoi polygons
of the mobile phone towers. The locations of the settlements (cities, villages, 
towns) are taken from OpenStreetMap. 
 

several years’ worth of information becomes available) to 
facilitate the mapping of human activity and migration within 

ountry (e.g., people are more likely to migrate to areas 
with access to electricity, health and education). Both human 
activity and migration can provide an accurate estimation of 
electricity needs and facilitate better electrification plans, 

when combined with other data sources used in 
rification planning practices [14]. 

In the light of the above, the proposed framework and 
steps to quantify the 

potential of mobile phone data to enhance state-of-the-art 

requirements and consumption 

valuation of the use of mobile phone data as a proxy for 
electricity needs via correlation 

ssessment of potential future migration of population 
to electrified areas; and  

and decentralized 
considering mobile phone data and 

referenced information. 
requirements and consumption 

characteristics of Senegal is meant to provide context on the 
expected energy needs of the mobile phone users whose 

mobile phone towers. This 
economic and geo-referenced 

expected population and population 
density (i.e., average distance between households) in 

the access to electricity, 
 in each area. This 
mobile phone data 

mobile phone towers 
Dataset 2) based on the 

characteristics of the corresponding area, so that the 
correlation between the mobile phone data in a given area and 

aggregated electricity profile can be assessed. 
conditions that make 

the mobile phone datasets an accurate
future electricity needs and profile
migration trends towards electrified areas within the country 
are assessed based on the mobile phone 
Dataset 2). Again, this information can provide insights 
the future energy needs of an area after 
potentially improving electrification decisions. Finally, 
information extracted from the mobile phone data is 
with geo-referenced data to 
options for electrification, 
development of diesel engine
and development of dwelling
an example of the assessment of electrification options for 
Senegal based only on geo-referenced data).

A detailed description of each of the methodology 
relevant studies is provided in the next sections.

IV. ENERGY REQUIREMENTS 
CHARACTERISTICS OF 

The energy requirements 
currently available for Senegal are represented 
electricity demand profiles, solar radiation
different areas, and the size and location of villages and their 
access to electricity, health, and education

The aggregated electricity deman
basis (i.e., 8760 data points) for the whole country was 
provided by Senelec [15]. The solar radiation and temperature 
profiles for Senegal (also 8,760
were obtained from the SoDa solar energy services da
[16]. A thorough description of the different types of villages 
in Senegal, their location, 
education and health services 
electrification study for Senegal 
[14] (see Table I for an example of typical services considered 
for villages of different sizes).

Analysis of the abovementioned information 
the differentiation of the mobile phone data based on the 
context of the area where the 
The reception area of each
approximated by a Voronoi diagram (i.e., the area 
corresponding to a given tower comprises all points that are 
closer to that tower than to any other tower).
mobile phone data corresponding to each Voronoi area 
classified based on the level of electrification in the area 
where the mobile phone towers are located, as shown in Fig. 
2. This differentiation of the mobile phone data is critical to 
identify the conditions where mobile phone data is a good 
proxy for energy needs, as will be further discussed below.

polygons defined by the location 
The locations of the settlements (cities, villages, 

Table I: Example of the maximum amount of institutions
considered for average villages of different population sizes in 
Services 

500 
Hospitals 1 
Schools 1 
Markets 1 
Public Lighting points 3 

 

3

an accurate proxy for current and 
electricity needs and profiles. Afterwards, potential 

towards electrified areas within the country 
are assessed based on the mobile phone mobility data (i.e., 

his information can provide insights into 
needs of an area after it is electrified, thus 

potentially improving electrification decisions. Finally, all this 
extracted from the mobile phone data is combined 

to build different state-of-the-art 
 namely, MV grid extensions, 

engine-based (community) Microgrids, 
and development of dwelling-level PV systems (see [14] for 
an example of the assessment of electrification options for 

referenced data).  
A detailed description of each of the methodology steps and 

is provided in the next sections. 

REQUIREMENTS AND CONSUMPTION 
CHARACTERISTICS OF SENEGAL 

requirements and consumption characteristics 
Senegal are represented by the country 

electricity demand profiles, solar radiation and temperatures in 
and the size and location of villages and their 

access to electricity, health, and education services. 
The aggregated electricity demand profile on an hourly 

basis (i.e., 8760 data points) for the whole country was 
The solar radiation and temperature 

760 hourly data points for 2013) 
were obtained from the SoDa solar energy services database 

A thorough description of the different types of villages 
, and their access to electricity, 

services were obtained from a previous 
electrification study for Senegal prepared for the World Bank 

(see Table I for an example of typical services considered 
for villages of different sizes). 

Analysis of the abovementioned information can facilitate 
the differentiation of the mobile phone data based on the 
context of the area where the mobile phone towers are located. 

reception area of each mobile phone tower has been 
a Voronoi diagram (i.e., the area 

corresponding to a given tower comprises all points that are 
closer to that tower than to any other tower). For instance, the 

corresponding to each Voronoi area can be 
classified based on the level of electrification in the area 

towers are located, as shown in Fig. 
. This differentiation of the mobile phone data is critical to 

ditions where mobile phone data is a good 
proxy for energy needs, as will be further discussed below. 

 
Table I: Example of the maximum amount of institutions/services that are 

considered for average villages of different population sizes in Senegal [14]. 
Village size (population) 

 1,000 5,000 10,000 
1 1 2 
1 2 3 
1 3 13 
6 50 99 

Electrification rates in Senegal



Using information from mobile phone infrastructure  
to facilitate electrification
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electricity demand



But not only…

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Distance of trip origin [km]

Pe
rc

en
ta

ge
 o

f t
rip

s

 

 

Trips to non−electrified areas
Trips to electrified areas



Electrification technology optioneering: 
techno-economic analysis

§  Medium	voltage	
electricity	grid	
extension	

§  Diesel-based	microgrid	
installa7on	

§  Tradi7onal	and	
minimalis7c	solar	
photovoltaic	system	

The model and equations are in the paper ;)
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Electrification recommendations

Martinez-Cesena, Mancarella, Ndiaye, Schläpfer  
D4D Challenge 2015, First Prize (best overall) and Energy Prize
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Thank you!!

Markus Schläpfer — schlaepfer@arch.ethz.ch 
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