

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Overview

- The data is now available: <u>http://www.ia.arch.ethz.ch/l08-analysis-</u> <u>and-interpretation/</u>
- Additional thoughts from the experiment to assist with your final projects
- Workshop style course today: Q&A on your projects

Final Project Requirements

- Formulate 1-2 specific question(s) of interest to your State your hypothesis/expected outcome based on supporting literature (minimum)
- one source) your expertise, and intuition
- Answer that question through your analysis, for this: Select the best available data sources for your question (minimum of 2 data sources)
- - Include a time series and/or clustering analysis
- Summarize your results
 - Show a clear conclusion, does your analysis answer your question(s)?
- Conclusions
 - Lessons learned
 - If you had more time, if you were to run the study to answer your question you would. Collect additional data, have different types of participants, ask different/additional questions, etc.
- Also include sources of inspiration and references

<u>Update:</u> you may choose to pair-up and work in 2's

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Creative Data Mining | FS2016 | Danielle Griego | 25, April 2016

Example of a Project Question

- How do citizens respond to the change in isovists (narrow to open) in an urban environment?
 - 1. We first need to check if people actually respond as expected at each path:
 - 1. Do the survey results show the expected experience of the path at each of the 5 instances of Open to closed?
 - 2. How do these vary for each of the 5 instances and at the varying intensities of the isovist analysis?

Verification points

- 1. How does each individual respond to survey question 9 and 14?
 - 1. Same exact point
- 2. How does each individual respond to survey question 8 and 13?
 - 1. Same intersection, different perspectives

Statistical check

- How does each path (network) and open space (node) compare to one another?
- Calibrate each person's BF
 - Perhaps use the first section as the baseline?

Additional research questions/Future work

- Temporary street-level visual barriers?
 - Has this been taken into consideration in urban isovist analysis?
 - Do we have enough information to estimate this? Best methods?

Lessons learned/ Recommendations for future studies

- Wear tennis shoes/soft soul shoes
- Program the app to time-out when no longer connected to the backpack (NUC or Meshlium down)
- Turn off hibernate mode on the NUC
- The biofeedback wristband works best when it is in record mode (no connection to the visualization app); if it is on then this can distract the participants
- You cannot predict the weather
- Always schedule more participants than you need, for backup/cancelation purposes
- Make an electronic form for the survey to reduce post-study data entry (ie survey monkey)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

Sensors

Device	Sensor/ Measurement	units	Measurement range	Measurement frequency	Accuracy	Response time
WaspCity	Sound Pressure	dB	50-100 dB	0.4 Hz	±2.5 dB	Not Given
					Resistive sensor 20MOhm (Darkness)	
	Luminosity	%	0-100% (400- 700 nm)	0.4 Hz	5-20 kOhm(Light)	Not Given
	, Dust	mg/m3	Typical 0.5V/(0.1mg/m3)	0.4 Hz	Operating supply voltage 5±0.5V	10±1ms
WaspGas						
	Temperature	С	-40 ~ 125 C	0.25 Hz	±2 C(0-70 C), ±4 C(<0 C, >70C)	1.65 seconds
	Atmospheric Pressure	kPa	15 - 115 kPa	0.25 Hz	<±1.5% V	20 ms
					<±4% RH (a 25C, range 30-80%), ±6	
	Humidity	%RH	0-100% RH	0.25 Hz	%RH(range 0-100)	<15 seconds
	O3/VOC	V - kohm	0.01 ppm	0.25 Hz		
			· · ·		44-72 mV variation between voltage at	
	CO2	V - kohm	350-1000 ppm	0.25 Hz	350ppm and 3500ppm	90 seconds
					6-100 (typically 55, ratio between the	
	NO2	V - kohm	0.05 - 5 ppm	0.25 Hz	resistance at 0.25ppm and in air)	30 seconds
	AP1(C4H10, CH3CH2OH, H2,					
	CO. CH4)	V - kohm	1-100 ppm	0.25 Hz	Sensitivity: 0.3 ~ 0.6: includes	30 seconds
	AP 2 (C6H5CH3, H2S,					
	CH3CH2OH, NH3, H2)	V - kohm	1-30 ppm	0.25 Hz	Sensitivity: 0.15 ~ 0.5	30 seconds
Meshlium Scanner AP			Wifi Scanner (50-200m)		Measurement range depends on he	
	Wifi Scanner	MAC address	Bluetooth Scanner (20-30m)	push values @ 0.016 Hz	antenna and line of sight to the device	60 seconds
	Wifi Scanner	AP		push values @ 0.016 Hz		
		RSSI (Received Signal Strenght	-40 dBm (nearest node) to -90		distance of 10m ~=(50dBm) 50m	
	Wifi Scanner	Indicator)	dBm (marthes nodes)	push values @ 0 016 Hz	~=(75dBm)	
Mobile Device				variable dependent on device		
	GPS	lat/long	outdoor only	satellite connection		
	Survey	12 questions, scale -2 to 2	NA	At checkpoint		
GPS						
	GPS	lat/long	outdoor only	1 Hz		
Biofeedback Wristband		Sensor output: Blood Volume				
	PPG (Photonlethysmography)	Pulse (BPV)		64 Hz	0.9 nW/Digit	
	EDA (Electrodermal Activity)		0.01 mSiements -100 mSiemen	s 4 Hz		
	Skin Temperature Infrared					
	thermopile	С	-40-115 C	4 Hz	±0.2 C within 36-39 C	
	3 Axis accoloromotor	X X Z		27 H ₇		

Survey

Visualizing data in QGIS

- Download QGIS: <u>https://www.qgis.org/en/site/</u> <u>forusers/download.html</u>
- Downloading the Openlayers plugin: <u>http://gis.stackexchange.com/</u> <u>questions/12814/how-to-add-osm-</u> <u>layer-to-qgis</u>
- Creating a raster image: <u>http://gis.stackexchange.com/</u> <u>questions/80488/how-to-clip-an-</u> <u>openlayers-osm-background-to-a-</u> <u>vector-boundary</u>

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ETH

