
Exercise 2

Visualize ComplexCity
Chair of Information Architecture

ETH Zürich

March 1, 2013

1 Slides

Go through the slides of the presentation.

a) Run the code snippets of the following slides and print all corre-
sponding outputs: Slides 7, 8, 11

b) Construct a convex hull, a Voronoi diagram and a shortest path
in Blender.

2 Programming

In this exercise, we will program Bubblesort. We will use the sorting
algorithm to sort the pixels of a picture.

a) Program a function bubble which sorts a list. As hint us the fol-
lowing pseudocode:

bubblesort, sorting a list liste
def bubblesort(liste):

while somethingChanged:
for i in range(0, len(liste)-1):

if (i-th element > (i+1)-th element):
swap the i-th element with the (i+1)-th
element of liste

return liste

Test your program with a list of numbers, e.g.

liste = [99,4,42,66,265,222,1]
print(liste)
newListe = bubblesort(liste)
print(newListe)

b) Now we are going to adapt our bubblesort function, so that it can
sort pixels from a picture according to their brightness. Since
a picture has three values per image, we need to change the if

1

statement in the code of exercise a. Instead of comparing only
numbers, we compare the sum of the RGB values.

bubblesortPicture, sorting a list liste
def bubblesortPicture(liste):

while somethingChanged:
for i in range(0, len(liste)-1):

i-th RGBsum = liste[i][0] +
liste[i][1] + liste[i][2]

(i+1)-th RGBsum = liste[i+1][0] +
liste[i+1][1] + liste[i+1][2]

if (i-th RGBsum > (i+1)-th RGBsum):
swap the i-th element with the (i+1)-th
element of liste

return liste

With the function adapted, we can now load a small picture and
sort it with the algorithm.

read in a picture and get the pixels as a list.
import Image
pic = Image.open("someSmallImage.png")
a = list(pic.getdata())

Apply bubblesortPicture to the list.
newA = bubblesortPicture(a)

Set the pixels in the picture to the sorted ones.
pic.putdata(newA)

Show the picture.
pic.show()

c) To see what time difference a good algorithm can have to naive
implementations, compare the following with the time your sort-
ing algorithm is running. This uses the sorting algorithm which
is integrated into Python:

read in a picture and get the pixels as a list.
import Image
pic2 = Image.open("someSmallImage.png")
a = list(pic2.getdata())

Apply the Python internal sorting function to
the list.
newA = sorted(a, key=lambda data:data[0] +

data[1] + data[2])

Set the pixels in the picture to the sorted ones.
pic2.putdata(a)

Show the picture.
pic2.show()

2

3 Blender

We will construct a Delaunay triangulation using Blender.

a) Add some points into an empty scene. The points should all be
on the x-y-plane.

b) Use Proportianal Editing to project the points on a convex hull as
depicted in slide 18.

c) Construct the convex hull around the projected points.

3

d) Delete all the faces and corresponding edges, where the normal
of the face points upwards.

e) When you now project the points back into a plain (set scal-
ing in z-direction to zero) and change the viewport shading to
wireframe, you can see the delaunay triangulation we just con-
structed.

4

5

	Slides
	Programming
	Blender

