
30.01.14

Chair of Information Architecture, ETH Zürich
Digital Urban Visualization: Introduction to Programming II 06.10.2014



- Recap of last week.

- How to read CSV files.

- More dimensional lists.

- Cellular Automata and other grid based simulations.

- Exercise.

Introduction to Programming III
Menu Items of Today



Introduction to Programming III
Recap of last Week

What is the difference?

for a in [1,3]:

a = a * a

print(a)

for a in [1,3]:

a = a * a

print(a)



Introduction to Programming II
Recap of last Week

What is this?

def square(a):
ret = a * a
return ret



Introduction to Programming III
Writing CSV Data Files

Last week we saw how to read a CSV file. But we also want to store data to a file. 

This can be done in a similar way as writing, but with just a few different 

commands.

Problem: We have two lists, one containing names and the other containing ages. 

Names = ['Hans', 'John', 'Carl']

Ages = [23,41,32]

We want to store them in a CSV file to, for example, process them in Excel.



Introduction to Programming III
Writing CSV Data Files

import csv

f = open('path/to/age.csv', 'r')

csvReader = csv.reader(f, delimiter = ';')

ageSum = 0

for row in csvReader:

        ageSum += int(row[1])

f.close()

print(ageSum)

import csv

f = open('path/to/age.csv', 'w')

csvWriter = csv.writer(f, delimiter = ';')

names = ['Hans','John','Carl']

ages = [23,41,32]

for i in range(0,len(names)):

        currRow = [names[i], ages[i]]

        csvWriter.writerow(currRow)

f.close()



Introduction to Programming III
Writing CSV Data Files

This code produces a CSV file with the name ages.csv.

The content of it looks the following:

Hans, 23

John, 41

Carl, 32



Introduction to Programming III
More Dimensional Lists

It is possible to have lists within lists within lists within lists …

They can get very useful when we, for example, work with data wich is grid based 

and in two dimensions. An example for this is the data you can get from the Swiss 

Federal Statistics office.



Introduction to Programming III
More Dimensional Lists



Introduction to Programming III
More Dimensional Lists

A way to work with such data is to use two-dimensional lists. For example:

data = [[1,2,3],[4,5,6],[7,8,9]]

This can be understood as:

[[ 1, 2, 3]

  [ 4, 5, 6] or

  [ 7, 8, 9]]

       

         

1 2 3

4 5 6

7 8 9



Introduction to Programming III
More Dimensional Lists

A way to work with such data is to use two-dimensional lists. For example:

data = [[1,2,3],[4,5,6],[7,8,9]]

To access a certain value in the two-dimensional list, we first access the 

corresponding element of the outer list and then the one of the inner one. 

To set a variable a to the fourth element, we would do the following in the code:

a = data[1][0]

       

         



Introduction to Programming III
More Dimensional Lists

A way to work with such data is to use two-dimensional lists. For example:

data = [[1,2,3],[4,5,6],[7,8,9]]

To set certain values in the data list, we would do it similar as accessing it, but put 

that element on the left-hand side of the assignment operator:

data[2][1] = 12       

         



Introduction to Programming III
Cellular Automata

A cellular automaton consists of a regular grid of cells, each in one of a finite 

number of states, such as on and off. …  For each cell, a set of cells called its 

neighborhood is defined relative to the specified cell. (wikipedia)       

         



Introduction to Programming III
Cellular Automata

Cellular Automata have certain rules, how they change their status according to the 

current state and the state of the neighbors. In the one-dimensional case this could 

be:      

         

Picture source: mathworld.wolfram.com



Introduction to Programming III
Grid Based Interaction

The simple rules of Cellular Automata can be extended and made more 

complicated, they can have bigger neighborhoods, states between zero and one, 

interact in more complicated ways, …

For example diffusion can be simulated, when we set the cells to contain some 

amount of a material and then all cell give 10% of their material to their neighbors.

      

         



Introduction to Programming III
Grid Based Interaction

Video source: youtube.com



Introduction to Programming III
Grid Based Interaction

Video source: youtube.com



Introduction to Programming III
Exercise

In todays exercise you will go through a visualization workflow. 

1. We do a simulation of a behavior we are interested in.

2. We export the results to a file.

3. We load the data in a visualization software and animate it.



Introduction to Programming III
Exercise

We will do a simulation of segregation dynamics.

-  There are two types of agents in our simulation.

-  Both types prefer to live within a neighborhood of their own type.

- If they are not happy within their current neighborhood, they look for a better 

location and when they find it, they move there.

- In our current version of the model, we have two agent types, indicated by 

numbers 1 and 2 in the field list. A zero indicates that the current field is not 

occupied.



Introduction to Programming III
Exercise



Introduction to Programming III
Exercise



Introduction to Programming III
Exercise: 1st Task

First you will need to implement the function, which calculates for a given agent the 

 number of neighboors of the same type as himself. 

Maybe helpful: modulo works also for negative numbers, e.g. -1%10 == 9



Introduction to Programming III
Exercise: 2nd Task

Second you will need to implement the function which saves the current state of 

the simulation into a CSV file.

Hint: Loop through all the elements and call the writer.writerow function once for 

every field.

Careful: Do not save fields with a value not equal to 1 or 2. 



Introduction to Programming III
Exercise: 2nd Task

You will open Blender and Produce you first visualization from Data and produced 

with only programming!



Introduction to Programming III
Exercise: 2nd Task



Python Basics
Helpful Links

- http://www.tutorialspoint.com/python 

- http://docs.python.org/3/ 

- http://greenteapress.com/thinkpython/html/index.html 

- And many more... 

http://www.tutorialspoint.com/python
http://docs.python.org/3/
http://greenteapress.com/thinkpython/html/index.html

